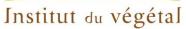


ARVALIS

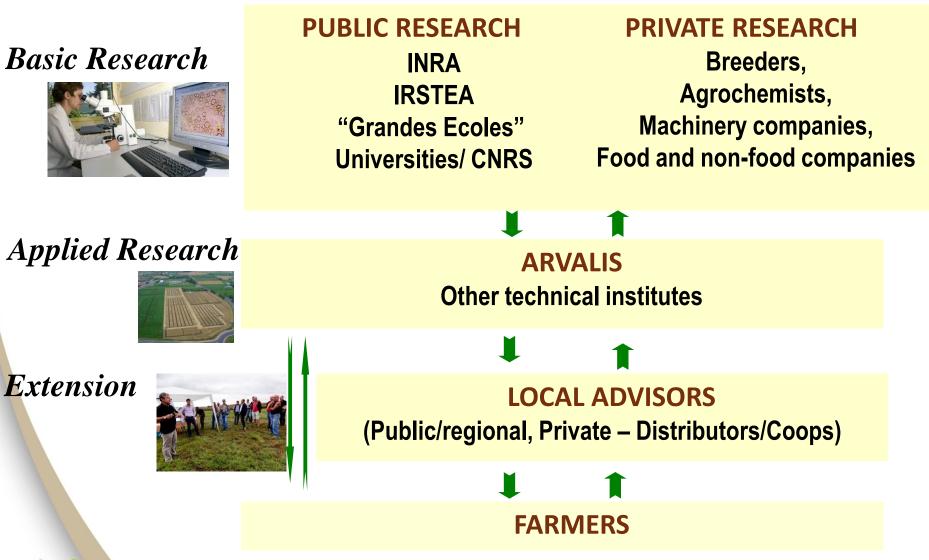
Institut du végétal


Wheat yield progress in Europe – practical examples from France

November 30th 2016

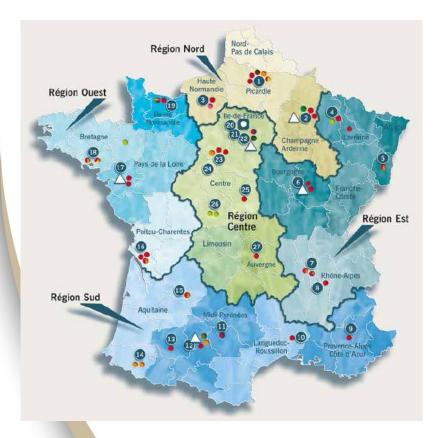
Jean-Pierre COHAN

Head of crop-physiology, biotechnology and crop phenotyping programs jp.cohan@arvalisinstitutduvegetal.fr



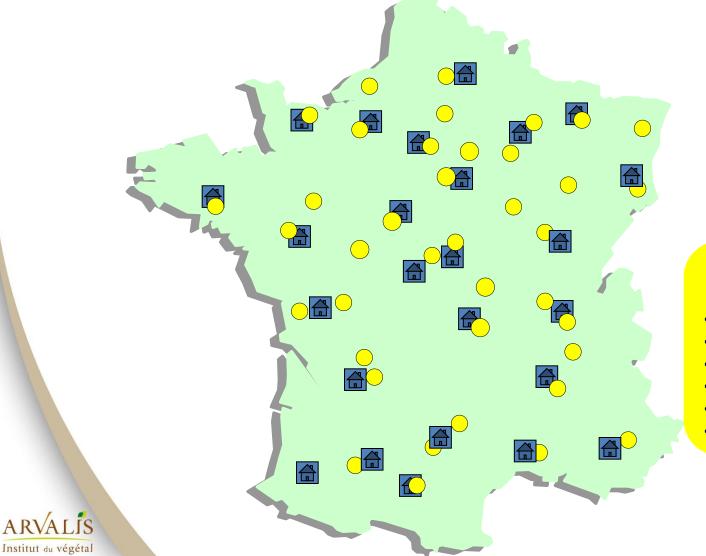
Institut du végétal Several elements of this presentation have been provided by: Jean-Charles Deswartes & Philippe Gate (ARVALIS) Hélène Lucas (INRA)

Institut du végétal


ARVALIS, a brief overview

Institut du végétal

ARVALIS, a brief overview


- An agricultural research Institute
- Funded by French farmers
- 30 research stations and laboratories all over the country
- 400 permanent people divided into 4 main departments:
- → Research and development
- → Regional actions
- ➔ Scientific direction (material and methods, statistics)

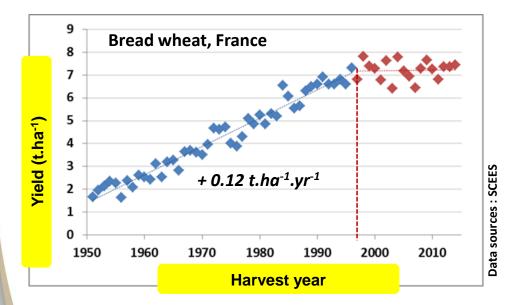
→Marketing and communication (newsletters, website, DMT, conferences)

- **Crops :** grain cereals, corn, grassland and forage, potatoes, flax, tobacco, cover-crops
- **Studies** from gene/seed to harvest quality for humans and cattle
- Topics including production, economics and environment

ARVALIS, a brief overview

Winter cereals: A national network of field trials

- Research stations
- Main Winter cereals
 Field trials


Topics:

- Varieties evaluation
- Crop nutrition
- Crop-physiology
- Biotechnology
- Crop protection
- ...

Stagnating wheat yields in France and Europe : <u>the diagnosis</u>

ARVALIS

Institut du végétal

	Contents lists available at ScienceDirect	Reki Crope	
	Field Crops Research		
ELSEVIER	journal homepage: www.elsevier.com/locate/fcr		SCIENCE & IMPACT

Why are wheat yields stagnating in Europe? A comprehensive data analysis for France

Nadine Brisson^{a, a}, Philippe Gate^b, David Gouache^b, Gilles Charmet^c, François-Xavier Oury^c, Frédéric Huard^a ¹INRA ACROCLIM 84914, Avignon Cedes 9, France

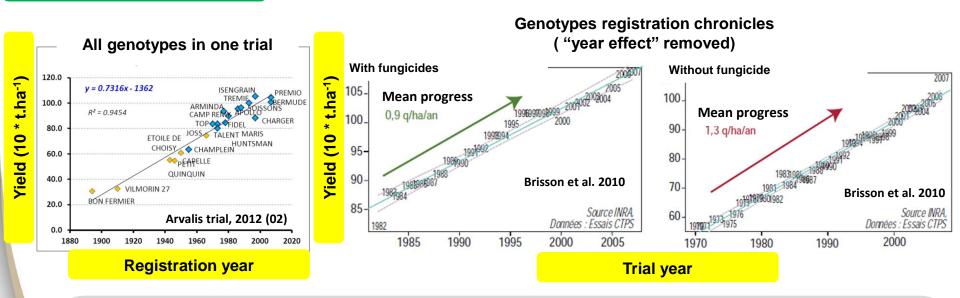
^a INRA AGROCLIM 84914, Avignon Cedex 9, France ^b ARVALIS Institut du Végétal, La Minière, 78280 Guyancourt, France ^c INRA UMR GDEC, 234 av du Brêzet, 63 100 Clermont-Ferrand, France

Institut du végétal

Same trend in most European countries

- No more systematic yield growth from year to year
- Observed in numerous
 European countries
- Especially for winter crops (not the case for maize and sugarbeet in France)

Table 2

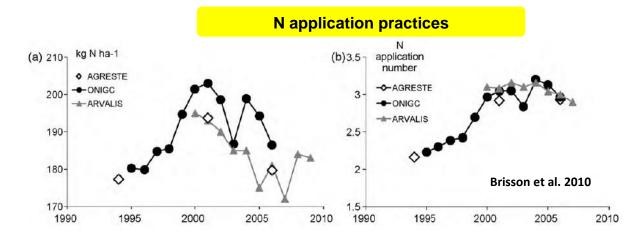

Results of the rising-plateau regression yield analysis throughout various European countries in terms of the year of stagnation and the significance of this evolution compared to the single sloping straight line (** very significant P<0.01, no star P>0.05). Source of data: FAO.

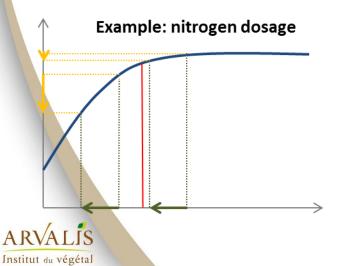
Country	Year of stagnation
Denmark	1995 (**)
France	1996 (**)
Germany	1999
Italy	1994
Netherlands	1993 (**)
Spain	1989
Switzerland	1990 (**)
United Kingdom	1996 (**)

Stagnating wheat yields in France: why ?

Genetic progress ?

Institut du végétal

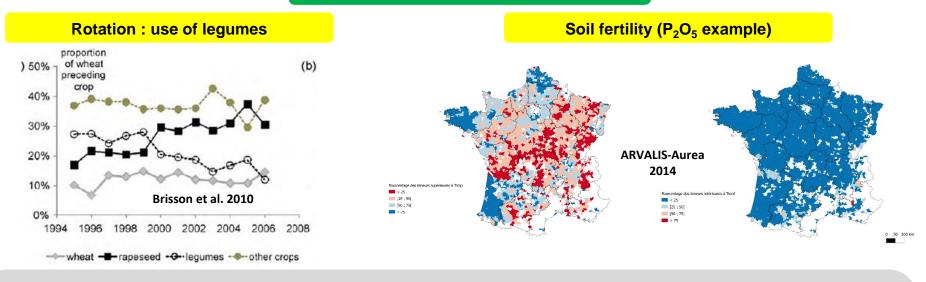



- Recent varieties are more productive than previous ones (+0.1 t/yr) → constant genetic progress.
- Recent varieties are less susceptible to diseases than previously (higher genetic gain for "un-treated" set than for "treated" set)
- Varietal adoption is still an issue (slower than for maize) → genetic progress transferred to farmers

→ genetic progress prevents yields from falling. If genetic progress ceased, yields would fall.

Stagnating wheat yields in France: why ?

Crop nutrition and soil fertility

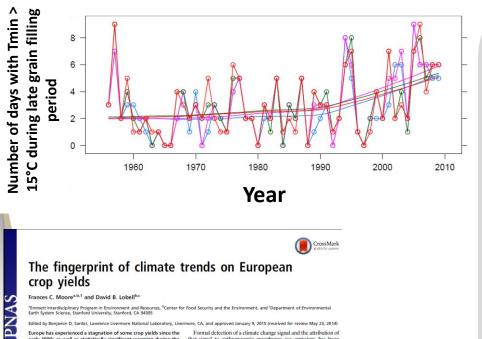


Reduced dosage (regulatory repercussion), but adoption of more targeted inputs (split application, remote sensing tools...).

Impact of reduced dosage difficult to assess because of the non-linear response of yield to N → impact probably undervalued

Stagnating wheat yields in France: why ?

Crop nutrition and soil fertility



- Rotation: use of the most beneficial preceding crops (legumes) has been reduced by half
- Soil fertility: disparate soil carbon (C) conditions (no general drop). Phosphorous (P) concentrations sometimes restrictive but only for sensitive crops (excluding wheat most of the time). Soil structure not assessed.

Diseases, pests and weeds ? ARVALIS **Fungicide:** slight reduction in dosage (with major inter-annual fluctuations), but more effective products and less sensitive varieties **Weed-control:** more and more complicated, difficult to assess **Pest:** no assessed but probably not involved in the main trend

Stagnating wheat yields in France: why?

Adverse weather conditions

Frances C. Moore^{a,b,1} and David B. Lobell^{b,}

ARVALIS

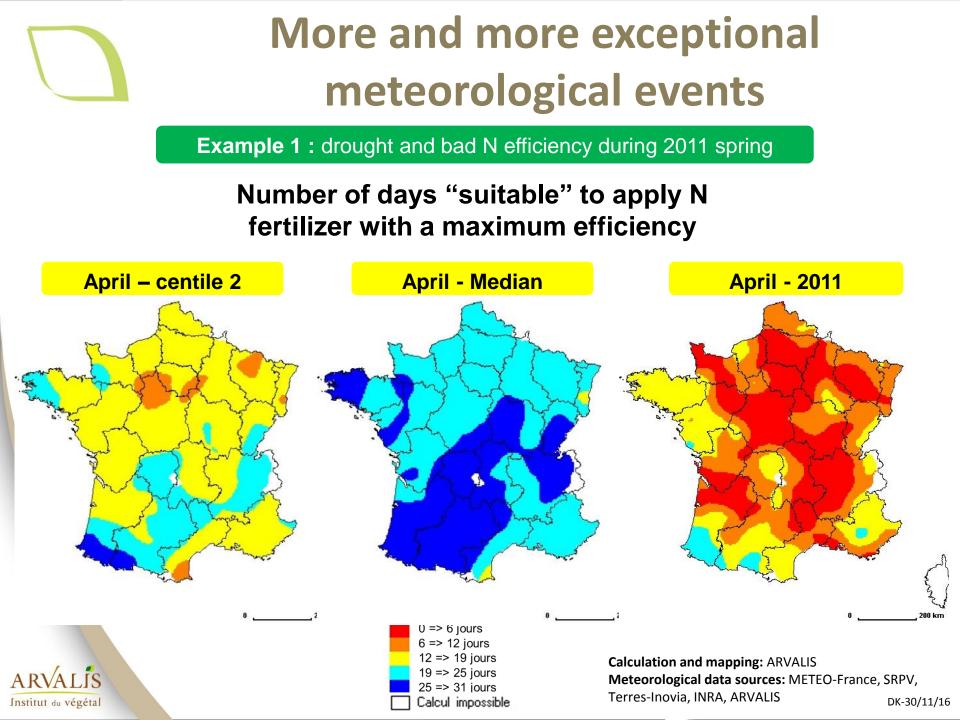
Institut du végétal

ent and Resources, ^bCenter for Food Security and the Environ nce, Stanford University, Stanford, CA 94305

erienced a stagnation of some crop yields since the early 1990s as well as statistically significant warming during the growing season. Although it has been argued that these two are causally connected, no previous studies have formally attributed ng-term yield trends to a changing climate. Here, we present

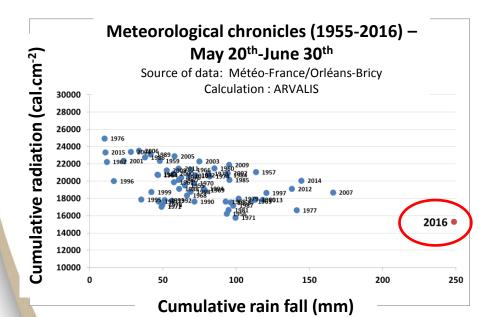
Formal detection of a climate change signal and the attribution of that signal to anthropogenic greenhouse gas emissions has been successful in many physical and some biological systems (10-12). However, few studies have attributed changing yield pattern to climate trends. This analysis is complicated by two factors. First, th

ARTICLES PUBLISHED ONLINE: 25 MAY 2014 | DOI: 10.1038/NCLIMA

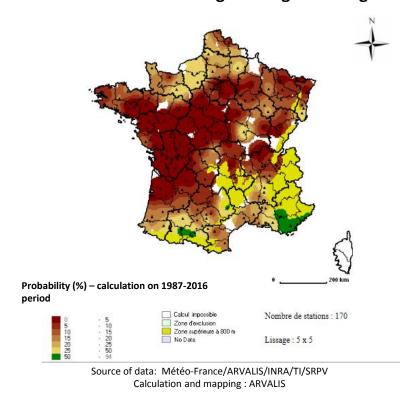

Adverse weather conditions for European wheat production will become more frequent with climate change

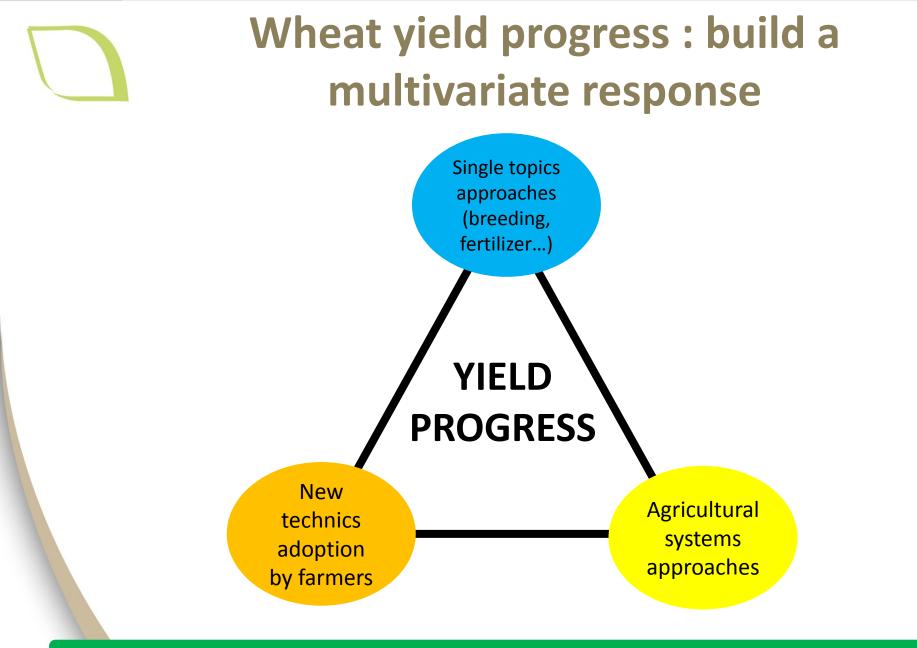
Miroslav Trnka^{1,2*}, Reimund P. Rötter³, Margarita Ruiz-Ramos⁴, Kurt Christian Kersebaum⁵, Jørgen E. Olesen⁶, Zdeněk Žalud^{1,2} and Mikhail A. Semenov

Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based


- Trend to warmer climate so shorter cycle \rightarrow slightly unfavorable
- "Threshold effect" of higher temperatures: more cases of 'scorching' temperatures
- More cases of unpredictable extremes (freezes, drought, heatwaves)
- ➔ Adverse weather conditions in the plural, not necessarily just one set of conditions
- → No clear illustration, rather a body of collected evidence and knowledge
- → Need to better understand wheat physiological traits involved

Not necessarily completely convergent with recent studies (Moore and Lobell, 2015): "average temperature" approach vs. "climatic incidents"


More and more exceptional meteorological events

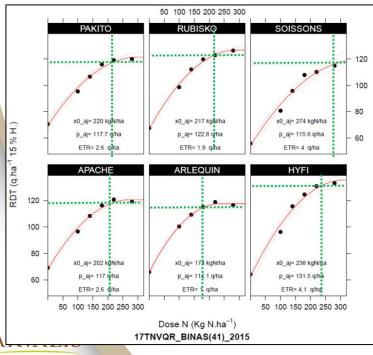

Example 2 : Cumulative rain fall and lack of radiation during 2016 grain filling period

Institut du végétal

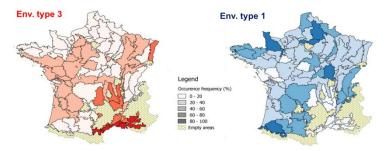
Probability to obtain a cumulative radiation under 2016 level during wheat grain filling

Some examples are following

Wheat yield progress : increasing genotype performances


Key research projects

FSOV 2012-K project FSOV 2014-N BW project


Improving NUE: → Breeding program (new indicators

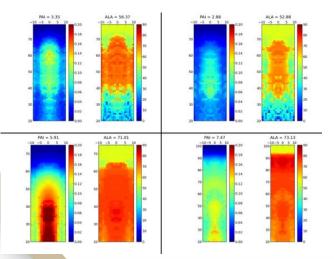
and genetics) ➔ Registration process (new indicators)

Improving WUE: → Breeding program (new indicators) and genetics)

Significant differences for water-stress frequencies scenarios between wheat growing areas \rightarrow contrasting ideotypes to arow?

Institut du végétal

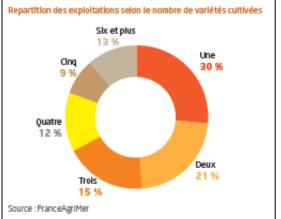
ARVALIS

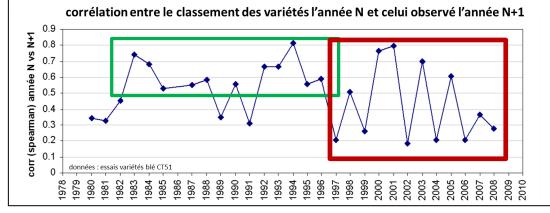

ARVALIS

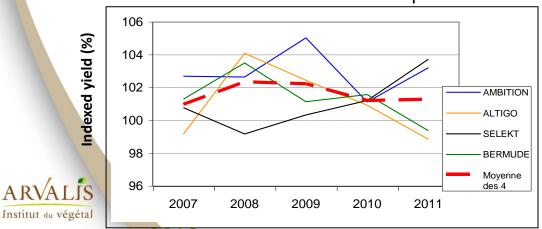
Institut du végétal

Wheat yield progress : increasing genotype performances

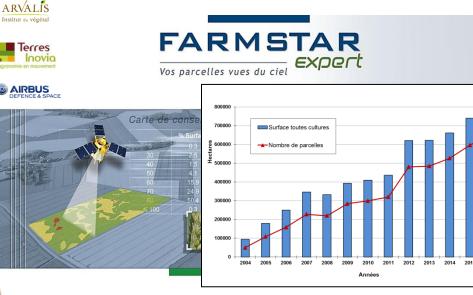
Developing efficient new phenotyping tools




Several innovative phenotyping tools held by INRA, Terres-Inovia and ARVALIS


Wheat yield progress : increasing genotype performances

• Practices adoption by farmers Panel of varieties on farms



- The number of varieties per farm is limited
- The performance of a variety depends on the year
- **Climate change increases the uncertainty** of the performance of a new variety
- The **panel of varieties contains old varieties,** not necessarily the most productive

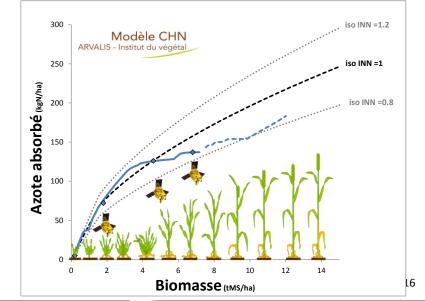
Varlétés	Année d'inscription	Avis meunerie 2015*	Classe technologique Arvails
lubisko	2012	BPMF	BP
Cellule	2012	BPMF	BPS
Apache	1998	VRM	BPS
Arezzo	2008	VRM	BPS
Boregar	2008	BPMF	BPS
Pakito	2011	VRM	BPS
Trapez	2009		BP
Bergamo	2012		BP
Oregrain	2012	VRM	BPS
Expert	2008		BP

Wheat yield progress : more precise nutrition management

Nitrogen Status Remote sensing tool

Example : satellite based FARMSTAR

793 000 ha monitored in 2016

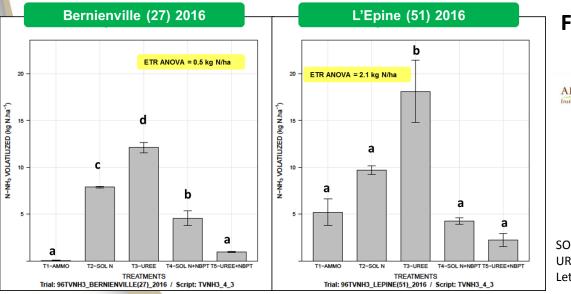

- → Wheat : 484 000 ha
- → Barley : 94 000 ha
- → Oilseed rape: 212 000 ha
- ➔ Triticale : 3500 ha

Mixing remote sensing and model based tools

Example : ARVALIS CHN model

Operational model mixing high level scientific knowledges and the need to have a practical tool for different users

For technicians, researchers, breeders, stakeholders... (same "motor", different "interfaces")



Institut du végétal

Wheat yield progress : new fertilizers assessments (Urea+NBPT example)

Name	Company	Regulation status	Availability in France	U/NH₄/NO₃ (% N-Total)	N-Total (% masse)	Urease inhibitor- 1*	Urease inhibitor- 2*
NEXEN	Koch Fertilizer Products	CE 2003/2003	2012	100/0/0	46	NBPT	
UTEC 46	Eurochem Agro France	CE 2003/2003	2013	100/0/0	46	NBPT	
NOVIUS	In Vivo	CE 2003/2003	2014	100/0/0	46	NBPT	
UREA+LIMUS	BASF	CE 2003/2003	Spring 2017	100/0/0	46	NBPT	NPPT

* Concentration according to CE 2003/2003

First results of ADEME EVAMIN project

Flux analysis method : INRA-ECOSYS/ARVALIS

SOL N + NBPT = UAN + Agrotain from Koch Fertilizer Products UREE+NBPT = NEXEN from Koch Fertilizer Products Letters = HG Tuckey tests

Wheat yield progress : new fertilizers assessments (Urea+NBPT example)

YIELD	All points	Points UREA < AN	Points UREA ≥ AN
[NEXEN] - [AN]	+1.0 q/ha**	-0.4 q/ha ^{NS}	+2.9 q/ha***
[NEXEN] - [UREA]	+1.5 q/ha***	+ 2.3q/ha***	+0.4 q/ha ^{ns}
[UREA] - [AN]	-0.4 q/ha ^{NS}	-2.8 q/ha***	+2.5 q/ha***

Statistical tests : *** 1% significant; ** 5% significant; * 10% significant; ns : non significant

19 trials ARVALIS 2012-2016 (31, 32, 41, 45, 51, 55, 56, 67)

- Soils : Chalky soils (6 trials), loamy soils (13 trials)
- Species: 5 durum wheat trials , 14 bread wheat trials
- Comparisons made on all applications (53 points)

Similar results for UTEC 46 and UREA+LIMUS

The Wheat Initiative

An international research partnership for wheat improvement

 Created in 2011 following endorsement by G20 Agriculture Ministries to improve food security

A framework to establish strategic priorities, identify synergies and facilitate collaborations for wheat improvement at the international level

www.wheatinitiative.org

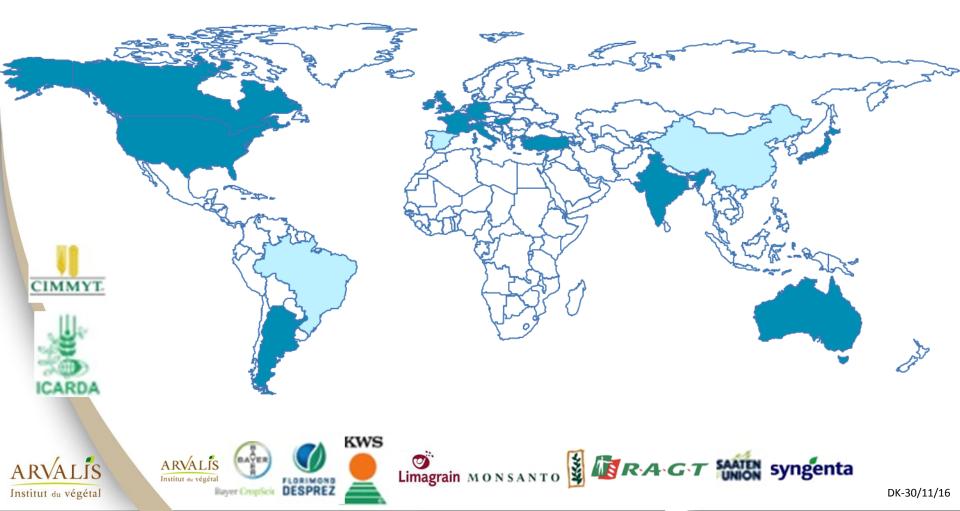
Contact: <u>wheat.initiative@versailles.inra.fr</u>

Institut du végétal

Institut du végétal

The Wheat Initiative WHEAT INITIATIVE

 Vision: a vibrant global wheat research community sharing resources, capabilities, data and ideas to improve wheat land productivity, quality and sustainable production


Mission: develop a global Strategic
 Research Agenda and support its
 implementation through coordinated
 actions, knowledge and resource sharing
 and efficient investment

The Wheat Initiative All countries and companies welcome!

16 countries, 9 private companies, 2 CGIAR Centres

WHEAT INITIATIVE

The Wheat Initiative Expert Working Groups Any expert welcome !

Established

- Wheat Information System
- Genetics and genomics of Durum wheat
- Wheat breeding methods and strategies
- Wheat phenotyping to support wheat improvement
- Wheat plant and crop modelling
 - Nutrient use efficiency

Institut du végétal

Developing

- Control of wheat pathogens and pests
- Adaptation of wheat to abiotic stress
- Global wheat germplasm conservation and use community
- Improving wheat quality for processing and health

Newly approved

Agronomy

The Wheat Initiative

From an Vision Document to a Strategic Research Agenda

May 2013

www.wheatinitiative.org

Strategic Research Agenda

www.wheatinitiative.org

2013

DK-30/11/16

Thank you for your attention

DK-30/11/16